Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 899: 148147, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38191099

RESUMO

It is now understood that 4-Coumarate-CoA ligases (4-CL) are pivotal in bridging the phenylpropanoid metabolic pathway and the lignin biosynthesis pathway in plants. However, limited information on 4-CL genes and their functions in fungi is available. In this study, we cloned the 4-CL gene (Gl21040) from Ganoderma lucidum, which spans 2178 bp and consists of 10 exons and 9 introns. We also developed RNA interference and overexpression vectors for Gl21040 to investigate its roles in G. lucidum. Our findings indicated that in the Gl21040 interference transformants, 4-CL enzyme activities decreased by 31 %-57 %, flavonoids contents decreased by 10 %-22 %, lignin contents decreased by 20 %-36 % compared to the wild-type (WT) strain. Conversely, in the Gl21040 overexpression transformants, 4-CL enzyme activity increased by 108 %-143 %, flavonoids contents increased by 8 %-37 %, lignin contents improved by 15 %-17 % compared to the WT strain. Furthermore, primordia formation was delayed by approximately 10 days in the Gl21040-interferenced transformants but occurred 3 days earlier in the Gl21040-overexpressed transformants compared to the WT strain. These results underscored the involvement of the Gl21040 gene in flavonoid synthesis, lignin synthesis, and fruiting body formation in G. lucidum.


Assuntos
Reishi , Reishi/genética , Reishi/metabolismo , Lignina , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1180415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670880

RESUMO

Background and Purpose: Nonproliferative diabetic retinopathy (NPDR) occurs in the early stages of Diabetic retinopathy (DR), and the study of its metabolic markers will help to prevent DR. Hence, we aimed to establish a risk score based on multiple metabolites through untargeted metabolomic analysis of venous blood from NPDR patients and diabetic non-DR patients. Experimental Approach: Untargeted metabolomics of venous blood samples from patients with NPDR, diabetes melitus without DR were performed using high-performance liquid chromatography-mass spectrometry. Results: Detailed metabolomic evaluation showed distinct clusters of metabolites in plasma samples from patients with NPDR and diabetic non-DR patients. NPDR patients had significantly higher levels of phenylacetylglycine, L-aspartic acid, tiglylglycine, and 3-sulfinato-L-alaninate, and lower level of indolelactic acid, threonic acid, L-arginine (Arg), and 4-dodecylbenzenesulfonic acid compared to control. The expression profiles of these eight NPDR risk-related characteristic metabolites were analyzed using Cox regression to establish a risk score model. Subsequently, univariate and multivariate Cox regression analyses were used to determine that this risk score model was a predictor of independent prognosis for NPDR. Conclusions: Untargeted metabolome analysis of blood metabolites revealed unreported metabolic alterations in NPDR patients compared with those in diabetic non-DR patients or MH. In the venous blood, we identified depleted metabolites thA and Arg, indicating that they might play a role in NPDR development.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Metabolômica , Fatores de Risco , Metaboloma , Arginina
3.
Chiropr Man Therap ; 31(1): 27, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563732

RESUMO

BACKGROUND: In this retrospective study, we aimed to develop a nomogram to predict recurrence during a 1-year period of spinal manipulation/mobilization (SM/M) in patients with low back pain (LBP) with greater pain intensity, more severe comorbid conditions, or a neuropathic component. METHODS: A total of 786 consecutive patients with LBP treated with SM/M as primary therapy were divided into training (n = 545) and validation (n = 241) sets. Cox regression analyses were used to assess the relative value of clinical factors and lumbar magnetic resonance imaging features associated with recurrence during the 1-year period. Predictors of recurrence with significant differences were used to construct a nomogram in the training set. We evaluated the performance of the model on the training and validation sets to determine its discriminative ability, calibration, and clinical utility. The prognostic value of the nomogram for predicting recurrence was assessed using Kaplan-Meier analysis and time-dependent receiver operating characteristic analyses. RESULTS: A nomogram comprising hospitalization time, previous history of LBP, disease duration, lumbar range of motion, lower extremity tendon reflex, muscle strength, ratio of herniation to uncompressed dural sac area, and Pfirrmann classification was established for recurrence during a 1-year period after SM/M in patients with LBP. Favorable calibration and discrimination were observed in the nomogram training and validation sets (C-index 0.753 and 0.779, respectively). Decision curve analysis confirmed the clinical utility of the nomogram. Over a 1-year period, the nomogram showed satisfactory performance in predicting recurrence in LBP after SM/M. CONCLUSION: We established and validated a novel nomogram that can accurately predict a patient's risk of LBP recurrence following SM/M. This realistic prognostic model may aid doctors and therapists in their decision-making process and strategy optimization for non-surgical treatment of LBP using SM/M.


Assuntos
Dor Lombar , Manipulação da Coluna , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/terapia , Nomogramas , Estudos Retrospectivos , Região Lombossacral
4.
Front Microbiol ; 13: 956421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992655

RESUMO

Ganoderma lucidum is an important medicinal fungus in Asian countries. Ganoderic acid (GA) is the major variety of bioactive and medicative components in G. lucidum. Biosynthesis of secondary metabolites is usually associated with cell differentiation and development. However, the mechanism underlying these phenomena remain unclear. Transcription factors play an essential regulatory role in the signal transduction pathway, owing to the fact that they represent the major link between signal transduction and expression of target genes. In the present study, we performed transcriptome and metabolome analyses to identify transcription factors involved in GA biosynthesis during development of G. lucidum. Transcriptome data revealed differentially expressed genes between mycelia and primordia, as well as between mycelia and the fruiting body. Results from gene ontology enrichment analysis and metabolome analyses suggested that GAs and flavonoids biosynthetic process significantly changed during fungal development. The analysis of predicted occurrences of DNA-binding domains revealed a set of 53 potential transcription factor families in G. lucidum. Notably, we found homeobox transcription factor and velvet family protein played important role in GA biosynthesis. Combined with previous studies, we provided a model diagram of transcription factors involved in GA biosynthesis during fruiting body formation. Collectively, these results are expected to enhance our understanding into the mechanisms underlying secondary metabolite biosynthesis and development in fungi.

5.
J Fungi (Basel) ; 8(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35628712

RESUMO

Ganoderic acid (GA) is an important secondary metabolite of Ganoderma lucidum with a diverse array of pharmacological properties. In this study, we found that exogenous ethylene increased the production of endogenous ethylene and ganoderic acid in G. lucidum. However, the mechanism by which ethylene is regulated remains unclear. As a result, we performed a combined transcriptomics and nontargeted metabolomics analysis to evaluate the regulatory mechanism of ethylene. A total of 4070 differentially expressed genes (1835 up-regulated and 2235 down-regulated) and 378 differentially accumulated metabolites (289 up-regulated and 89 down-regulated) were identified in all groups. The transcriptomics and nontargeted metabolomics data revealed that genes involved in the tricarboxylic acid (TCA) cycle, polyamine metabolic pathway, acetyl-CoA carboxylase (ACC) pathway, and triterpenoid metabolism were up-regulated, whereas the metabolic intermediates involved in these metabolic pathways were down-regulated. These findings imply that ethylene potentially accelerates normal glucose metabolism, hence increasing the number of intermediates available for downstream biological processes, including polyamine metabolism, ethylene synthesis pathway, and ganoderic acid biosynthesis. The findings will contribute significantly to our understanding of secondary metabolites biosynthesis in fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...